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ABSTRACT: 

 

This paper presents a sensitivity analysis to find the optimal spectral band configuration for the 

derivation of leaf area index (LAI) from hyperspectral remote sensing data. The analysis is carried 

out on a data base of canopy reflectance spectra with a very high spectral sampling rate accompa-

nied with their true LAI. The reflectance spectra are simulated by a ray tracing software from three 

dimensional (3D) crop canopy models containing field measured spectra of plant parts. Empirical 

models are used to derive relationship between LAI and selected widely used vegetation indices. 

Best correlation results have been obtained with indices based on a 2-band-model (red, near infrared 

(NIR)), whereas the position of the NIR band should be located between the red edge inflection 

point and the lower red shoulder. Binning bands to broad bands improves the correlations due to re-

duced noise. 

 

 

1. INTRODUCTION 

 

The derivation of biophysical variables from 

multispectral optical Earth Observation (EO) 

data is a proven way to obtain information 

about the observed surface in a fast manner 

and on a large scale. In the near future hyper-

spectral instruments like the upcoming Envi-

ronmental Mapping & Analysis Program (En-

MAP) (launch scheduled for 2013) will pro-

vide a new quality of space-borne optical EO 

data which signifies highly spectral sampled 

data on a large scale. These data are expected 

to further increase the accuracy of the re-

trieval result. Hence, it is useful to know the 

spectral configuration requirements for a 

given application, such as band selection, 

spectral binning, and sensor optimisation. 

 

As a first example, this study was undertaken 

to investigate the optimal spectral bands and 

methods for the derivation of Leaf Area Index 

(LAI) from hyperspectral remote sensing data. 

The LAI is an important biophysical variable 

to asses the state and vitality of vegetation as 

it is directly related to photosynthesis, transpi-

ration, evapotranspiration, and net primary 

production. Furthermore, it is used as a key 

parameter for regional and global ecosystem 

models (Scurlock et al., 2001). 

 

 

2. DATA SIMULATION 

 

The data for the analysis were modelled from 

virtual canopies. Simulating artificial spectra 

enables to include numerous variations that 

can not be obtained from measurements in the 

field. 

 

The canopy spectra was simulated by utilizing 

ray tracing software (Lewis, 1999) from 3D 

canopy models superposed with in situ spec-

tra, i.e. plant parts and soil samples (Peisker 

et. al., 2008). 

 

 



 

2.1 3D canopy model 

 

A virtual 3D canopy model is generated by 

using 3D plant models, soil background in-

formation including a soil digital elevation 

model (DEM) and the distribution of the 

plants within the canopy. Furthermore, a spec-

tral library containing spectral information of 

the plant organs and the soil is essential.  

 

2.1.1 3D plant model: The Software 

AMAPsim (Barczi et al., 2007) was used for 

plant simulation providing a tool to recon-

struct plants virtually based on real measure-

ments. The software contains a structural 

growth model based on botanical theory to 

simulate plant morphogenesis producing ac-

curate, complex and detailed plant architec-

tures. Shape parameters of the plant organs 

leaves, stems and ears were acquired at differ-

ent growth stages to define the organ sizes 

and their growth dynamics (Barczi et al., 

2007). 

 

2.1.2 3D soil model and canopy geometry: 

A data base of field-measured height profiles 

was used to generate a soil DEM with the 

typical geometry and distance of furrows 

within rye fields due to mechanical drilling of 

seed. The plant models were distributed 

within the soil model by cloning and ran-

domly rotating the 'master plant' around its 

vertical axis (Lewis, 1999). The distance be-

tween the furrows and the number of plants 

placed within a defined section of a furrow 

defines the plant density of the canopy. 

 

2.2 Canopy reflectance simulation 

 

Canopy reflectance data is determined by the 

acquisition and illumination geometry as well 

as the geometry and spectral information of 

the objects on the surface. To obtain these 

mixed spectra the artificial 3D crop field is 

measured virtually by ray tracing. Ray tracing 

is a method to generate two dimensional (2D) 

image data by tracing the path of light through 

a 3D scene onto an image plane (Glassner, 

1989). 

 

The canopy reflectance of the virtual 3D rye 

canopy is modelled by the Advanced RAdio-

metric RAy Tracer (ARARAT) developed by 

Philip Lewis (Lewis, 1999; Lewis & Muller, 

1992). The ray tracer calculates the canopy re-

flectance based on 3D canopy descriptions 

with associated spectral information, camera 

imaging properties and illumination condi-

tions by using reverse ray tracing (Lewis, 

1999).  

 

 

3. DATA BASE 
 

A spectral library with about 250 different 

spectra of winter rye was built up. The spectra 

were sampled from canopies within one 

growth stage with slightly less or more devel-

oped plants but varying in their geometry (dis-

tance between drilling rows, orientation of 

drilling rows), plant appearance (number of 

tillers at all, number of fully developed tillers) 

and soil properties (soil moisture) to adapt the 

possible conditions within several fields. Fig-

ure 1 illustrates the variations within the data 

base of simulated reflectance spectra of winter 

rye canopies. 

 

 
 

Figure 1. Canopy variations: All simulated re-

flectance spectra of different winter rye cano-

pies. 

 

Besides the spectral library of the canopy 

spectra, the true LAI of the canopies was cal-

culated as part of the data base. The LAI is the 

functional one-sided (green) leaf area (s) per 

unit ground area (G) (Monteith, 1973). 
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The LAI was calculated by summing the fac-

ets’ area of the leaves of the 3D canopy nor-

malised by the horizontal area of the 3D soil 

surface which ensures real measured LAI for 

each canopy spectrum. The LAI for the spec-

tra of the data base are between 0.9 and 3.5. 

 

 

4. ANALYSIS METHODS 

 

To find the optimal spectral bands for LAI re-

trieval, numerous reflectance spectra were 

calculated from each spectrum of the data 

base applying spectral response functions with 

varying widths and positions as well as noise 

within an end-to-end sensor simulation (sec-

tion 4.1). Finally, empirical models are used 

to derive the relation between the LAI and se-

lected widely used vegetation indices (section 

4.2). 

 

4.1 End-to-end sensor simulation 

 

Each reflectance spectrum of the data base 

was transformed to digital numbers (DN) fol-

lowing a forward simulation approach. It con-

sisted in three steps: 

 

� Conversion of reflectance data to top-of-

atmosphere-radiance (TOA-radiance) 

data with tabled data calculated from 

MODTRAN4, 

� Spectral resampling using defined spec-

tral band setting given by a set of spectral 

response function spectral sampling in-

terval and band width, 

� Radiometric simulation including noise 

(Gaussian-distributed) and quantisation to 

2
12

 bits. 

 

TOA-radiance conversion was carried out us-

ing MODTRAN4 which required location 

specific input parameters, i.e. illumination 

and observation angles, columnar water va-

pour (CWV), aerosol optical thickness 

(AOT), and surface elevation (Guanter et al. 

2007). The illumination was chosen to adapt 

the conditions of a summer day during noon 

in the region of Brandenburg (latitude = 

52.5°, longitude = 13°, sun zenith angle = 35°, 

sun azimuth angle = 170°). The viewing was 

defined to be nadir with a height of 700 kilo-

metres. For the AOT and the CWV mean val-

ues of a representative summer day (AOT = 

0.2 at 550 nm, CWV = 2.0 g/cm
2
) were cho-

sen. 

 

Spectral resampling was carried out for each 

spectrum of the data base while various spec-

tral response functions were applied. Full 

width of half maximum (FWHM) was applied 

to a sequence between 5 nm and 130 nm us-

ing 5 nm increments with an additional lowest 

band width of 2nm (2, 5, 10 ... 130 nm). The 

band’s centre position was stepwise altered 

between meaningful limits for each band (e.g. 

red band: 600 - 740 nm in 5 nm steps). Hence, 

more than 750 different spectral band con-

figurations for each band have been tested.  

 

The radiometric simulation was performed 

with two different noise levels (well and bad) 

to get an impression of noise effects. There-

fore, noise equivalent radiance (NER) was 

calculated twice, resolving reflectance data to 

0.35 % of the signal (well) and to 2.5 % of the 

signal (bad) at bands with a FWHM of 5 nm 

(Schläpfer & Schaepman, 2002). Bands with a 

FWHM larger than 5 nm had to adapt leading 

to improved signal-to-noise ratios (SNR) due 

to recording of higher amounts of photons 

(table 1). 

 

FWHM SNR well SNR bad 

  5 nm ~ 350 ~ 85 

10 nm ~ 500 ~ 125 

20 nm ~ 700 ~ 170 

50 nm ~ 1100 ~ 275 

 

Table 1. SNR values for selected FWHMs for 

well and bad noise configurations at 800 nm 

and 0.3 reflectance level. 



 

To accomplish the end-to-end sensor simula-

tion an atmospheric correction was performed 

to retrieve reflectance data from DN data. 

 

4.2 Leaf area index retrieval 

 

The retrieval of the LAI is done convention-

ally using empirical relationship between LAI 

and vegetation indices (Baret & Guyot, 1991; 

Haboudane et al., 2004). Therefore, 31 widely 

used vegetation indices were applied to both 

broad-band (i.e. NDVI, SR, RDVI, 

greenNDVI, etc.) and narrow-band indices 

(i.e. REIP, DVI, GI, etc.). Each index is corre-

lated with the true LAI using second order 

polynomial, exponential, logarithmic and 

power regression models. For each band con-

figuration a single model was developed. Ta-

ble 2 shows all vegetation indices with a 

strong relationship to LAI in this study for a 

selected band configuration. 

 

VI Reference R² Bands 

WDRVI Gitelson, 2004 0.937 B2, B4 

GreenNDVI 

 

 

Bushman & Nagel, 

1993; Gitelson & 

Merzylak, 1994 

0.937 

 

 

B1, B4 

 

 

MSR Chen, 1996 0.937 B2, B4 

SR 

 

Birth & McVey, 1968; 

Jordan, 1969 

0.935 

 

B2, B4 

 

NDVI Rouse et al., 1973 0.930 B2, B4 

PSNDa Blackburn, 1998 0.930 B2, B4 

GI Smith et al., 1995 0.928 B1, B2 

TVI Deering et al., 1975 0.927 B2, B4 

CTVI 

 

Perry & Lauten-

schlager, 1984 

0.925 

 

B2, B4 

 

ChlNDI 

 

Gitelson & Merzylak, 

1994 

0.903 

 

B3, B5 

 

ZTM 

 

Zarco-Tejada et al., 

2001 

0.902 

 

B3, B5 

 

mNDVI Jürgens, 1997 0.899 B4, B6 

MSI Rock et al., 1986 0.898 B4, B6 

CIgreen Gitelson et al., 2003 0.894 B1, B4 

 

Table 2. Vegetation indices with a strong rela-

tionship (R² over 0.85) with LAI for a se-

lected spectral band configuration with well 

noise configuration: FWHM = 20 nm for all 

bands, B1 centre = 550 nm, B2 centre = 670 

nm, B3 centre = 705 nm, B4 centre = 800 nm, 

B5 centre = 750 nm, B6 centre = 1670 nm. 

The best fitting model, describing the rela-

tionship between WDRVI and LAI, deter-

mined by the coefficient of determination R² 

(3-73 from Wälder, 2008) using cross valida-

tion was chosen for the subsequence analysis. 

 

 

5. RESULTS 

 

5.1 Optimal spectral band settings 
 

Polynomial models which were found to pro-

vide the best description of the relationship 

between WDRVI and LAI were calculated for 

each spectral band configuration in the red 

and NIR range. The results are presented in 

figure 2. 

 

 
 

Figure 2. R² of best regression model between 

WDRVI and LAI for all calculated spectral 

band configurations of red band (a) and NIR 

band (b) with well noise configuration. 

 

The best band setting for the red band is a 

FWHM of about 10 - 30 nm and the centre 

position at 670 - 680 nm which is the position 



 

of the chlorophyll absorption band. Remark-

able is the best location of the NIR band cen-

tre between 740 and 800 nm which is the 

range between the red edge inflection point 

and the lower red shoulder. However, one 

would suspect the top of the red shoulder as 

best. The FWHM is varying between 20 and 

70 nm depending on the location. 

 

All presented results were achieved for well 

noise configuration. With the spectra with bad 

SNRs no good fitting of the regression models 

could be achieved (R² less than 0.85). 

 

5.2 Binning 
 

As shown in the previous section, noise is a 

strong limiting factor. Narrow bands are nois-

ier than broad bands (table 1). Hence, binning 

narrow bands to broad bands reduces noise 

and increases the SNR. 

 

As an example, 4 nm sampled spectra with 

different noise configuration were compared. 

For the best bands the regression model fits 

with 93.1 % (R² = 0.931) for well and 82.2 % 

for bad noise configurations. The binning was 

calculated by averaging the sum of the band 

values. Figure 3 shows the binning results 

where the best combination of binned bands 

resulted with a fitting of 93.1 %. 

 

 
 

Figure 3. R² of best regression model between 

WDRVI and LAI for binned bands of 4 nm 

sampled spectra with bad noise configuration. 

Centre for red band = 680 nm, centre for NIR 

band = 780 nm. 

 

Binning spectra with high SNR values also 

improves the prediction of LAI. EnMAP spec-

tra, for example, predict with a R² = 0.93 (red 

band: centre ≅ 672 nm, FWHM ≅ 6.5 nm; 

NIR band: centre ≅ 786 nm, FWHM ≅ 7.5 

nm). Binning the bands weighted yields with 

a R² of 0.936. 

 

 

6. CONCLUSION 

 

This study was conducted to investigate the 

optimal spectral bands for the retrieval of 

LAI. The WDRVI model was found to be the 

best to predict LAI. The optimal bands are a 

red band with FWHM of about 10 - 30 nm lo-

cated between 670 and 680 nm, and a NIR 

band with a FWHM of about 20 - 70 nm de-

pending on the location between 740 and 800 

nm. Predicting LAI from hyperspectral data 

yields equal results as with optimal broad 

bands. However, the possibility of binning 

bands enables the adaption of the best band 

setting leading to improved retrieval results 

over optimal broad bands. 
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